Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity.
نویسندگان
چکیده
Expression of eukaryotic translation initiation factor 4E (eIF4E) is commonly elevated in human and experimental cancers, promoting angiogenesis and tumor growth. Elevated eIF4E levels selectively increase translation of growth factors important in malignancy (e.g., VEGF, cyclin D1) and is thereby an attractive anticancer therapeutic target. Yet to date, no eIF4E-specific therapy has been developed. Herein we report development of eIF4E-specific antisense oligonucleotides (ASOs) designed to have the necessary tissue stability and nuclease resistance required for systemic anticancer therapy. In mammalian cultured cells, these ASOs specifically targeted the eIF4E mRNA for destruction, repressing expression of eIF4E-regulated proteins (e.g., VEGF, cyclin D1, survivin, c-myc, Bcl-2), inducing apoptosis, and preventing endothelial cells from forming vessel-like structures. Most importantly, intravenous ASO administration selectively and significantly reduced eIF4E expression in human tumor xenografts, significantly suppressing tumor growth. Because these ASOs also target murine eIF4E, we assessed the impact of eIF4E reduction in normal tissues. Despite reducing eIF4E levels by 80% in mouse liver, eIF4E-specific ASO administration did not affect body weight, organ weight, or liver transaminase levels, thereby providing the first in vivo evidence that cancers may be more susceptible to eIF4E inhibition than normal tissues. These data have prompted eIF4E-specific ASO clinical trials for the treatment of human cancers.
منابع مشابه
Dual modulation of Ras-Mnk and PI3K-AKT-mTOR pathways: A Novel c-FLIP inhibitory mechanism of 3-AWA mediated translational attenuation through dephosphorylation of eIF4E
The eukaryotic translation initiation factor 4E (eIF4E) is considered as a key survival protein involved in cell cycle progression, transformation and apoptosis resistance. Herein, we demonstrate that medicinal plant derivative 3-AWA (from Withaferin A) suppressed the proliferation and metastasis of CaP cells through abrogation of eIF4E activation and expression via c-FLIP dependent mechanism. ...
متن کاملElevated Translation Initiation Factor eIF4E Is an Attractive Therapeutic Target in Multiple Myeloma.
eIF4E is the key regulator of protein translation and critical for translation. The oncogenic potential of tumorigenesis, which is highly contingent on cap-dependent eIF4E, also arises from the critical role in the nuclear export and cytosolic translation of oncogenic transcripts. Inhibition of Exportin1 (XPO1), which is the major nuclear export protein for eIF4E-bound oncoprotein mRNAs, result...
متن کاملTranslation initiation factor eIF4E is a target for tumor cell radiosensitization.
A core component in the cellular response to radiation occurs at the level of translational control of gene expression. Because a critical element in translation control is the availability of the initiation factor eIF4E, which selectively enhances the cap-dependent translation of mRNAs, we investigated a regulatory role for eIF4E in cellular radiosensitivity. eIF4E silencing enhanced the radio...
متن کاملTranslation initiation factor 4E blocks endoplasmic reticulum-mediated apoptosis.
Eukaryotic translation initiation factor 4E (eIF4E) is the mRNA cap-binding protein required for translation of cellular mRNAs utilizing the 5' cap structure. The rate-limiting factor for mRNA recruitment to ribosomes, eIF4E is a major target for regulation of translation by growth factors, hormones, and other extracellular stimuli. When overexpressed, eIF4E exerts profound effects on cell grow...
متن کاملTargeting the eukaryotic translation initiation factor 4E for cancer therapy.
The eukaryotic translation initiation factor 4E (eIF4E) is frequently overexpressed in human cancers in relation to disease progression and drives cellular transformation, tumorigenesis, and metastatic progression in experimental models. Enhanced eIF4E function results from eIF4E overexpression and/or activation of the ras and phosphatidylinositol 3-kinase/AKT pathways and selectively increases...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 117 9 شماره
صفحات -
تاریخ انتشار 2007